A Critical Role for Glycine Transporters in Hyperexcitability Disorders

نویسندگان

  • Robert J. Harvey
  • Eloisa Carta
  • Brian R. Pearce
  • Seo-Kyung Chung
  • Stéphane Supplisson
  • Mark I. Rees
  • Kirsten Harvey
چکیده

Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and non-sense mutations in the glycine receptor (GlyR) alpha1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR beta subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na(+)/Cl(-)-dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

Functional changes in astroglial cells in epilepsy.

Epilepsy comprises a group of disorders characterized by the periodic occurrence of seizures, and pathologic specimens from patients with temporal lobe epilepsy demonstrate marked reactive gliosis. Since recent studies have implicated glial cells in novel physiological roles in the CNS, such as modulation of synaptic transmission, it is plausible that glial cells may have a functional role in t...

متن کامل

SLC6 neurotransmitter transporters: structure, function, and regulation.

The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino ...

متن کامل

From substrate specificity to promiscuity: hybrid ABC transporters for osmoprotectants.

The ABC-transporters OpuB and OpuC from Bacillus subtilis function as osmoprotectant import systems. Their structural genes have most likely evolved through a duplication event but the two transporters are remarkably different in their substrate profile. OpuB possesses narrow substrate specificity, while OpuC is promiscuous. We assessed the functionality of hybrids between these two ABC-transpo...

متن کامل

Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters.

Bacillus subtilis possesses five osmotically regulated transporters (Opu) for the uptake of various compatible solutes for osmoprotective purposes. We have now found that compatible solutes also function as thermoprotectants for B. subtilis. Low concentrations of glycine betaine enhanced the growth of the B. subtilis wild-type strain JH642 at its maximal growth temperature (52 degrees C) but di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in Molecular Neuroscience

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008